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SUMMARY

The vortex-scalar element method, a scheme which utilizes vortex elements
to discretize the region of high vorticity and scalar elements to represent
species or temperature fields, is utilized in the numerical simulations of a
two-dimensional reacting mixing layer. Computations are performed for a diffu-
sion flame at high Reynolds and Peclet numbers without resorting to turbulence
models. In the nonreacting flow, the mean and fluctuation profiles of a con-
served scalar show good agreement with experimental measurements. Results for
the reacting flow indicate that for temperature-independent kinetics, the chem-
ical reaction begins immediately downstream of the splitter plate where mixing
starts. .Results for the reacting flow with Arrhenius kinetics show an ignition
delay, which depends on the reactants temperature, before significant chemical
reaction occurs. Harmonic forcing changes the structure of the layer, and con-
comitantly the rates of mixing and reaction, in accordance with experimental
results. Strong stretch within the braids in the nonequilibrium kinetics case
causes local flame quenching due to the temperature drop associated with the
large convective fluxes.

1. INTRODUCT1ON

Turbulent diffusion flames have been the subject of extensive experimental
and theoretical investigations during recent years (for a review, see Bilger
(ref. 1)). 1In most of the theoretical work, turbulence models are used to
¢lose a system of averaged transport equations which describes the statistical
behavior of the aerothermodynamical variables. Moment methods (ref. 2), eddy
break-up and mixing controlled models (ref. 3), flame sheet approximation
(ref. 4), assumed probability density function (PDF) shape methods (ref. 5),
solutions based on modeled joint PDF of scalar quantities (refs. 6 and 7), and
based on modeled joint PDF of scalar and velocity (ref. 8) are examples in
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which turbulence modeling have been used for the closure of equations governing
the statistical quantities. Much effort has gone into constructing accurate
models and in obtaining results that are in agreement with experimental meas-
urements. However, in complex systems, modeling is difficult because of our
lack of knowledge on the detailed dynamics of the flow. Furthermore, since
most of the interesting dynamical behavior of the flow is modeled a priori,
such features are not exhibited from the results of numerical computations
based on turbulence models, and thus can not advance our understanding of tur-
bulent combustion.

The progress in numerical methods and the availability of supercomputers
have had a major impact on turbulence research. Improved accuracy of the
numerics and increased storage and computational speed have made it possible
to solve the appropriate transport equations governing turbulent combustion
indirectly without the need for modeling over some limited parameter range.
Such nearly model-free "simulations," in comparison with calculations utilizing
turbulence models, have the advantage that the dominant physics of the problem
is not modeled a priori, but is recovered directly from the computed results.
Their results can be used to understand many important mechanisms of turbulent
transport and its direct influence on chemical reactions. Furthermore, since
the instantaneous behavior of the variables are known at all points and at all
times, accurate simulations offer a good method of probing the flow when exper-
imental techniques may fail. There are, however, some limitations on the range
of turbulent scales that can be resolved accurately by model free simulations.
Therefore, there is a need to validate the results of the simulations by a
direct comparison with experimental measurements. With such vaiidations, ab
initio predictions can ultimately be a reality.

Numerical methods have been used in a variety of forms for the simulation
of turbulent flows in complex configurations. A recent survey can be found in
review articles (refs. 9 and 10). In reacting flow, three approaches are used:
(1) finite difference methods, (2) spectral methods; and, (3) vortex methods.
In the first approach, the variables are defined on a grid and the transport
equations are approximated by discretizing the derivatives on the grid nodes.
Examples of this approach can be found in the work of Corcos and Sherman (ref.
11) who used a projection method to study the temporal evolution of a periodic
shear layer, and in Grinstein et al. (ref. 12) who used a flux-corrected trans-
port scheme to simulate the development of coherent structures in a two-
dimensional spatially evolving shear layer and examined their effect on mixing.

In spectral methods, the variables are expanded in series of harmonic
functions that satisfy the differential equations on a number of collocation
points. Riley et al. (ref. 13) used a pseudo-spectral scheme to study a three-
dimensional temporally-evolving reacting mixing layer assuming a constant reac-
tion rate, constant density, and no heat release. McMurtry et al. (ref. 14)
considered the effects of the chemical heat release on the fluid dynamics of a
two-dimensional mixing layer for a constant reaction rate. The interplay
between fluid dynamics and the chemical reaction is investigated under these
conditions. Givi et al. (ref. 15) used the same method to compute a two-
dimensional mixing layer with an Arrhenius chemical reaction and constant dens-
ity to assess the effects of large coherent structure on the local extinction
of the flame. Extension to spatilly-growing layers was initiated by Givi and
Jou (ref. 16) using a hybrid pseudo-spectral second order finite difference
scheme. 1In all cases, the Reynolds number was kept at small values, 0(100),
limited by the grid resolution and the number of harmonic modes.
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In the third approach, vortex methods are used. These schemes are grid
free, the transport of the variables takes place in a Lagrangian form, and the
solution 1s not restricted by the geometry of the confinement. Therefore they
can provide accurate simulations for high Reynolds number, spatially growing
flows. Moreover, vortex methods optimize the computational efforts by distri-
buting computational elements around regions of high vorticity. The applica-
tion of the method in thin premixed flame calculations with a finite density
jump has been reported by Ghoniem et al. (ref. 17) and Sethian (ref. 18), among
others. In these calculations, the vortex method was employed to compute the
flow field, and the dynamic effect of combustion was represented by the propa-
gation of a thin interface at the laminar burning velocity acting as a volumet-
ric source.

Vortex methods were also used in simulating diffusion flames in connection
with a finite-difference approach for the treatment of the scalar variables.
Ashurst and Barr (ref. 19) used the vortex method to compute the hydrodynamic
field and an Eulerian flux-corrected transport algorithm to compute the diffu-
sion and convection of a conserved Shvab-Zeldovich scalar approximating the
shape and convolution of the flame in.the 1imit of infinitely fast chemical
reaction. Lin and Pratt (ref. 20) used the random vortex method to simulate
the large-scale motion and a Monte-Carlo method to calculate the time-dependent
probability denstty function of the scalar quantities for both gaseous and
aqueous mixing layers. The PDF transport equation, however, required a closure
model for the molecular mixing term.

From this short review, i1t is clear that numerical simulations have played
an important role in elucidating the physics of turbulent reacting flows, and
that there is a continuing need for more direct simulations in order to explain
better some of the interesting physical phenomena that have been observed in
laboratory experiments.

In this work, we extend the vortex method to study nonpremixed chemical
reactions. A vortex-scalar element method is developed to treat both the
hydrodynamic and the scalar field in a Lagrangian sense. The fact that a chem-
jcal reaction is truly a Lagrangian process, i.e., it occurs when the particles
(or macroscopic elements) interact as they flow, motivate the implementation
of Lagrangian methods for simulations of high Reynolds number reacting flows.
The method is capable of handling a wide variety of initial and boundary condi-
tions and is not 1imited to simple flow boundaries. In this paper, we concen-
trate on the formulation of the model and the numerical schemes, and present
some preliminary validation studies and interpretations of the results.

In section 2, the geometrical configuration of a spatially evolving mixing
layer is presented, and the formulation of the problem and of the scheme are
described. Results of some sample calculations are given in section 3. Compu-
tations of a nonreacting mixing layer is performed first in order to check on
the accuracy of the method by comparing its results with experimental measure-
ments at the same conditions. Preliminary results of a reacting mixing layer
simulation in which the two reactants are introduced in different streams are
presented next. Both constant rate kinetics and temperature dependent kinetics
are considered. 1In both cases, the influence of the coherent structures on the
finite rate chemistry is assessed and in the second case, the nonequilibrium
effects in the reaction rate are examined. 1In the constant rate kinetics cal-
culations, the influence of harmonic forcing at the inlet of the mixing layer
is investigated. This study was motivated by recent experimental observations
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of Roberts and Roshko (ref. 22) and numerical computations of Ghoniem and Ng
(ref. 23). The paper is concluded in Section IV with a summary of our new
results and suggestions for future developments.

2. FORMULATION AND NUMERICAL SCHEME

A two-dimensional, confined, planar mixing layer is considered. A sche-
matic diagram of the flow field is shown in figure 1. Two initially unmixed
reactants, fuel F and oxidant 0, are present at small concentrations in the top
high speed stream and bottom low speed stream, respectively. We make the fol-
lowing assumptions: (1) the heat release is low so that its effect on the
dynamics of the flow is negligible; (2) the Mach number is small; (3) the free
stream concentrations of F and 0 are equal and constant; (4) the molecular dif-
fusivities are equal and constant; (5) the viscosity is the same in both
streams; and (6) the chemical reaction between F and 0 is single step, irre-
versible, and second order. The density is, therefore, constant, and the
transport equations of the hydrodynamic field and the scalar -- temperature or

species -- fields are decoupled. The equations governing this system are:
k
F+0 —P (1)
2
Vy = -e(x,t) (2)
w 12
at+u0Vw=ReV(.) (3)
aT 1.2 "
st t U T = Pe VT+QDawWw (4)
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acC
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at Yt = pe e v Cp * Da W (6)

where P indicates products and W = cpcg exp(-Ta/T) is the reaction rate,
written in terms of the rate of generation of products per unit mass.

u = (u,v) is the velocity, x = (x,y) and x,y are the streamwise and cross
stream directions, respectively, t 1is time, ¢ 4s the stream function defined
such that u = 3ap/3y and v = -ay/ax, w = Vxu is the vorticity, ¢ 1is the
concentration per unit mass, T s temperature. v = (a/9x, 3/d3y), and

v2 = 32/ax2 + 32/ay2. Variables are nondimensionalized with respect to the
appropriate combination of the total shear AU = U1 - U2, the channel height

H, the free stream concentration of F, cp,, the free stream temperature at

x = 0, To. In equation (5), J =F or O for fuel and oxidizer, respectively.
Re = AU H/v 1s the Reynolds number, where v 1s the kinematic viscosity. The
reaction rate constant k = A exp(-Ta/T) where A 1is the frequency factor, and
Ta 1s the activation energy, nondimensionalized with respect to (RTo), R

being the gas constant. Q 1is the enthalpy of reaction, nondimensionalized
with respect to CpTo, where Cp 4s the specific heat at constant pressure.

Pe = AU H/a s the Peclet number, where o« 1s the thermal diffusivity.




Da
Le

A cfo H/8U 1s the first Damkohler number. D s diffusivity and
o/D 1is the Lewis number.

Since equations (4) to (6) are similar, there is no need to solve them all
if the scalar concentrations cg, cg, and cp are normalized in such a way
that their initial and boundary conditions are identical. This is accomplished
by the use of Shvab-Zeldovich transformation (ref. 1). Introducing conserved
scalars Bfp = cp + cp, and Bgp =1 - (cg - cp), we get:

i, u e VBj = Pe]Le VZBJ (7)

for j = FP or OP. Since Bfp and Bgp have the same initial and boundary
conditions, Bfp = Bgp = B. The finite rate kinetics effects can be taken into
account by considering the transport equation for the product of chemical reac-
tion, equation (6), and equation (7) for a conserved scalar. If the Lewis num-
ber 1s unity, another conserved scalar can be introduced, Bpy = cp - 7/Q, and
the solution of equations (6) and (7) for cp and B will determine the behav-
for of all the scalar equantities, cf, cg, cp, and T.

2.1 The Vortex Scheme

In the vortex method, the vorticity field is represented by a finite num-
ber of vortex elements of finite cores:

w(x,t) = £ ry/82 f(x - x3) (8)

where Ty = [ o dA, 1s the circulation of a vortex element and & s the core
radius, while x4 1s the center of the element. f represents the voriticity
distribution associated with a vortex element, or the core function (Chorin

(ref. 23), Hald (ref. 24), and Beale and Majda (ref. 25).) The velocity field
is obtained by solving equation (2) using the discrete vorticity distribution.

u= LTy Kx - xy)el(x ~ x3) + up (9)

where K(x) = -(y,-x)/r2 is the kernal of the Poisson equation,

«(x) = §f r f(r) dr 1s the circulation within r, and r = |x|. u, 1is an
irrotational velocity field added to satisfy the potential boundary condition;
Up = V6 where v2¢ =0 and u.n =0 on solid boundaries while u.n = U at
the inlet, n 1s the normal unit vector. For the confined shear layer, the
boundary condition at x =0 1s: u=U1 for y>0 and u=1U2 at y <0,
while y =0 1is a vortex sheet of strength AU = U1 - UL2.

In this work, we use Rankine vortex elements, i.e., the vorticity of an
element is constant within the core and zero outside, f(r) = 1/« for r < §
and f(r) =0 for r > &§. Correspondingly, «(r) = r¢/2« for r < § and
xk =1 for r > &. Moreover, the potential velocity field is obtained by con-
formal transformation. Thus, the physical plane is mapped onto the upper half
plane and image vortices are used to satisfy the potential boundary conditions.
The form of the mapping function for the confined shear layer is given by
Ghoniem and Ng (ref. 22).




The motion of the vortex elements must be constructed such that the vor-
ticity field satisfies equation (3). This is accomplished by solving this
equation in two fractional steps:

Convection: 22+ u « Yu = 0 (10)
, % 12
Diffusion: at = Re Vw (11)

In the first step, the convective transport of vorticity is implemented in
terms of the Lagrangian displacement of the vortex elements using the current
velocity field computed from equation (9). 1In the second step, the solution
of the diffusion equation is simulated stochastically by the random walk dis-
placement of the vortex elements according to the appropriate population.

Thus:

x1(t + At) = x1‘t) + tk u(x1k)At = ny (12)

for 1 =1,2,...,N, where Iy 1is a k-th order time-integration scheme and

n1 is a two-dimensional Gaussian random variable with zero mean and standard
variation ¢ 2at/Re. For more details, see Ghoniem and Ng (ref. 22), Ghoniem
and Gagnon (ref. 26).

The no-sl1ip boundary condition at the walls is satisfied by generating new
vortex elements to cancel the induced velocity by the vorticity field. Here,
we generate vorticity only at the point of separation, i.e., at the tip of the
splitter plate since the growth of the boundary layers along the channel walls
at these high Reynolds numbers is small. At each time step, the new vorticity
AT = -AU Um At, where Um = (U1 + U2)/2, is consigned to No elements of
strength Ar/No and added to the field at points Ax = Um/No apart down-
stream of x = 0,

The effect of the numerical parameters on the accuracy of the results was
investigated by Ghoniem and Ng (ref. 22). Their results emphasized the impor-
tance of using a high order time-integration scheme with k = 2 to avoid
excessive numerical diffusion in the vorticity field. The value of No = 6 was
also found to be appropriate in order to obtain well-defined eddy structures
after the rollup and the first two pairings. The second pairing is accom-
plished within the domain of 0 < x < 6, therefore the computational domain was
Timited to Xpax = 6. Downstream of Xpax, the vorticity was deleted.

Varying Xmax Showed that the effect of deleting the vortex elements propa-
gates about one channel highest upstream, hence the results are accurate only
for 0 <x <5,

2.2 THE SCALAR FLEMENT METHOD

In this scheme, which is a two-dimensional extension of the random element
method of Ghoniem and Oppenheim (ref. 27), the scalar field is represented by a
set of elements each carrying a finite amount of the scalar field.

s(x,t) = T s3 &(x ~ x4) (13)




where s 1s a scalar field, being the temperature of species concentration, sy
is the strength of an element, defined as the amount of scalar carried by this
element and &(.) 1s the Dirac delta function, s4 = 1/8A § s(x,t) dA, where
SA = &§x8y, and d&x and 48y are the distances between the centers of neighbor-
ing elements in the streamwise and cross stream directions, respectively, and
x3y 1s the center of the element. If s 1s the active scalar, its transport
is governed by:

TS N S
ap tUCUs = Vs + W (14)
where Se 1is the ratio between the diffusive and convective time scales of
transport of s, Se = Pe for s =T, and Se = Pe Le if s = c. In the
scalar element method, this equation is solved in three fractional steps:

Convection: g% +UeVs =0 (15)
.88 1 .2
Diffusion: at = Se Vs (16)
Reaction: 2% . W ()
* o at

Convective and diffusive transport are taken into account in a similar way
as in the vortex method, i.e., by the Lagrangian motion of the scalar elements
using the velocity field u, computed using equation (9), and the random walk
displacement of the elements using a set of Gaussian random variables with zero
mean and. standard deviation VZAt/Se (Ghoniem and Sherman (ref. 28)). If x4
is the center of the element 1, then,

xj(t + Aat) = x4(t) + I u(xyjg) At + ny (18)

Chemical reaction changes the amount of reactants carried by the element
according to the integration of equation (17).

si(t + At) = sy(t) + W At (19)

However, the reaction occurs only when the element are close enough for molecu-
lar mixing to affect their composition. Therefore, at every time step, the
distance between the centers of each two elements of F and O

Bxqy = Ixj - xg| 1s computed. If Axyy s 8p, where &p = 0(1YSe) is the
difausion 1eng%h scale, the composition of each of the two element changes
according to equation (19). The initial distance between neighboring elements
must be small enough to allow enough interactions between the elements. This
1imits the maximum value of the Peclet number that can be economically used in
the computations to 0(1000).

The scheme, while providing an approximate solution of equation (12) in a
stochastic sense, mimics closely the actual physics of the reaction process.
This is achieved by using the Lagrangian formulation of the transport equations
and dealing with the chemical production terms in individual particles.




3. RESULTS AND DISCUSSION

The computer code, developed by Ghoniem and Ng (ref. 22) for vortex simu-
lation of a nonreacting shear layer, was vectorized in order to take advantage
of the computational capability of a CRAY-XMP. The scheme, being explicit in
time and requiring mostly nonrecursive computations, can utilize this capabil-
ity efficiently. The dynamics for the nonreacting layer was investigated 1in
detail in the work of Ghoniem and Ng (ref. 22). Here we concentrate on results
pertaining to mixing and to chemically-reacting layer.

3.1 Nonreacting Mixing Layer

Results of a typical simulation, presented in terms of the velocity and
location of all vortex elements used in the computations, are shown in
figures 2 to 4 for the cases of Re = 24 000, Re = 4000, and Re = 1000, respec-
tively. Each vortex element is depicted by a point, while its velocity rela-
tive to the mean velocity is represented by a 1ine vector starting at the
center of the vortex element. The velocity ratio across the layer at the inlet
is U2/u1 = 1/3.

Results show the formation of large vortex eddies by the rollup of the
vorticity layer that emanates at the splitter plate, and the subsequent pair-
ings of these eddies into larger structures. The rollup of the shear layer was
investigated in Ghoniem and Ng (ref. 22) by analyzing results at a wide range
of the Reynolds number and at different boundary conditions. Their analysis
show that: (1) the rollup is due to the growth of perturbations by the Kelvin-
Helmholtz instability mechanism, and the shedding frequency corresponds to the
most unstable frequency predicted from the linear stability analysis of a spa-
tially growing layer; (2) pairing, which is associated with the local subhar-
monic perturbations, results in a step-wise increase in the size of the
vorticity layer as two eddies merge; (3) The two sources of the subharmonic
perturbations are the downward motion of the layer and the monotonic growth in
the size of the eddies downstream; (4) the intrinsic dynamics of the instabil-
ity 1s not strongly affected by the value of the Reynolds number, except that
at the low Reynolds number the eddies are slightly larger due to the disperison
of vorticity by diffusion; and (5) the computed velocity statistics show good
agreements with experimental data, indicating that the fundamental mechanisms
of the shear layer are two-dimensional and, hence, the numerical scheme is cap-
able of predicting the large scale features accurately.

The study entrainment, a passive conserved scalar with a normalized con-
centration value equal to zero in the high speed stream and equal to one in the
low speed side is introduced at the inlet section. At each time step, 19 ele-
ments are introduced in each stream. The initial distance between two neigh-
boring elements in the cross stream direction is taken as &y = 0.021. The
time step At = 0.1, thus the distance between the elements in the streamwise
direction is &x = 0.05 on the average. Since diffusion is more critical in
the cross stream direction, &y 1s chosen to be smaller than &x. A case with
8y = 0.016, using 25 elements in each stream was computed, showing no signifi-
cant change in the overall behavior.

Figures 5 to 7 are obtained for Reynolds number, Peclet number, and veloc-
ity ratio 10 000, 4 000, and 1/2, respectively. Figures 5 and & show the
velocity and location of all the vortex and scalar elements respectively, while
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figure 7 exhibits the strength of each of the scalar elements at the nondimen-
sional times of t = 28, 29 and 30. In figure 6, the dots represent the fluid
from the high speed side with normalized concentration c¢ = 0, and the open
circles represent the fluid from the low speed side with ¢ = 1. This figure
indicates that the rollup of the vortices and their subsequent pairing entrains
fluid from both sides of the free streams into the cores of the vorticity
layer, which results in the enhancement of mixing between the two streams.
Entrainment asymmetry is observed as more fluid from the high speed side is
present in the low speed side than the opposite (Koochesfahani (ref. 29)).

The instantaneous profiles of the concentration field are averaged over a
long-time period and the statistical values are compared with experimental data
in figures 8 and 9. Figure 8 shows the mean value of the concentration, Cp, as
a function of (y - yg)/(x - Xg), where y, 1s measured at ¢y = 0.5 and xq
is the virtual origin of the mixing layer based on the mean concentration pro-
file (in the calculation, x5 = 0). In this figure, the solid line is the
computed mean concentration at x = 4 and the data points are obtained from
recent experimental measurement by Masutani and Bowman (ref. 30) for a dilute
nonreacting mixing layer with the same velocity ratio. Figure 9 shows a com-
parison between the computed and measured mean fluctuations of the concentra-
tion, ©'2 = (c - Eh)z. It is evident from the two figures that both the mean
and the second moment of the conserved scalar across the width of the shear
layer are accurately predicted by our computations.

We note that the results in figures 8 and 9 are in better agreement with
experimental data than those previously predicted by Givi et al. (ref. 31).
In these calculations, a k-¢ turbulence model and a gradient diffusion model
for turbulent transport of the scalar mean, moment, and probability density
function was utilized. 1In the k-¢ calculations, the concentration fluctua-
tions exhibit a fairly smooth bell-shaped profile with a much less clear double
"hump" in the middle region, indicating poor agreement near the high speed
stress. The present calculations show the two local maxima in the fluctuation
profiles that correspond to the location where the gradient of the mean value
is highest. The same behavior is observed by the experimental results of
Masutani and Bowman (ref. 30) and Batt (ref. 32). 1t is clear that, in accord-
ance with the findings of Broadwell and Briedenthal (ref. 33), the intermit-
tency caused by the large coherent structures contributes greatly to the sta-
tistics of this turbulent flow.

3.2 Reacting Mixing Layer

In the calculation of a reacting mixing layer, two reactants F and 0O
are introduced on both sides of the splitter plate. At x =0, for y > o,
cp =1, and ¢g =0, and for y >0, cg =1, and ¢f = 0, while cp = 0. As
reactants are entrained into the mixing cores of the layer, they diffuse across
the original interface and chemical reaction proceeds. The rollup and pairing
increases the original length of the interface by many folds and allow the
entrained fluid to diffuse along a larger boundary (Ghoniem et al. (ref. 34)).
During this process, if the Lagrangian elements utilized to represent the
interaction between chemically reacting species are brought close enough so
that the distance between two neighboring elements is smaller than the charac-
teristic diffusion length, they react at the rate defined by equation (17).



In figures 10 to 12, we present the velocity, location, and the strength
of the elements in terms of product concentration for the reacting mixing layer
with constant rate chemical kinetics and temperature-dependent reaction rate,
respectively. The amount of the products formed due to chemical reaction 1is
presented by the diameter of the circles in the figures, i.e., larger circles
indicate more products. In both cases, Re = 10 000, Pe = 4 000, and
U2/U1 = 1/3 while Le = 1. 1In the constant rate kinetics case, the value of
the Damkohler number Da = 1 and in the temperature-dependent kinetics Da =
200, Ta = 10, and Q = 5. Note that in both cases the value of the nondimen-
sional kinetic parameters are low enough so that the effects of heat release
on the fluid dynamics can be negligible. The stiffness of equation (19) for
large values of the Damkohler number imposes a restriction on the time step of
integration. 1In these calculations, we found that At = 0.1 is sufficiently
small to accurately integrate the slow chemistry.

A comparison between the two figures reveal that under isothermal condi-
tions, the products are formed as mixing occurs just downstream of the splitter
plate, while in the temperature-dependent kinetics calculations, there is an
ignition delay before the reactant reach a temperature high enough to allow any
significant chemical reaction to occur. Once the reaction begins, the mechan-
ism of product formation and chemical reaction in both cases are asymptotically
the same. Increasing the Damkohler number to Da = 400 results in a shorter
ignition delay, and preheating the reactants by increasing the temperature at
the inlet to T4 = Q/2 while Da = 200, eliminates the ignition delay as indi-
cated in figures 13 and 14, respectively.

In order to examine the effects of chemical reaction on the transport of
species, the concentration statistics in the temperature-independent reaction
case are-presented in figures 15 and 16. These figures correspond to the
ensemble mean and fluctuations in the bottom-stress species concentration in a
reacting mixing layer with Da =1, U2/U1 = 1/2, Re = 10 000, and Pe = 4000.

A comparison between figures 15 and 8, and between figures 16 and 9 indicates
that near the free stream, the chemistry does not affect the statistical behav-
jor of the species. Near the reaction zone, however, the mean and the rms
values of the concentration are lower under reacting conditions, while the
second hump near the high speed stream side of the rms profile in the nonreact-
ing layer is eliminated in the reacting flow due to the local consumption of
the species by chemical reaction. The same behavior was also observed in the
experiments of Masutani and Bowman (ref. 30) in a reacting mixing layer under
isothermal conditions. Their results, however, can not be compared quantita-
tively with the present calculations since the values of the chemical param-
eters employed in the numerical simulation are substantially lower than those
of the experiment.

3.3 Effect of Harmonic Forcing

The dynamic effect of oscillating the upstream side of the layer was
studied experimentally by several authors, e.g., Oster and Wygnanski (ref. 35)
and Roberts and Roshko (ref. 21) and numerically by Ghoniem and Ng (ref. 22).
Their results indicate that in the forced case, eddy interactions follow four
stages. In the first stage, the layer rolls up at the harmonic of the forcing
frequency closest to the most amplified mode. In the second stage, a process
of accelerated pairings yields a large eddy which is in tune with the forcing
frequency. This large resonant eddy appears earlier than it would appear in
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the case of an unforced layer. 1In the third stage, paring among resonant
eddies, which represents a neutrally stable mode, 1s disabled and the growth
of the vorticity layer s impaired for several eddies downstream. 1In the
fourth stage, the effect of forcing diminishes and pseudo-random pairing is
resumed. Moreover, velocity statistics are affected by forcing, and the sign
~ of momentum transfer across the layer is reversed following pairing. Entrain-
ment of passive particles was found to be commensurate with the development of
the vorticity layer.

In the recent experiment by Roberts and Roshko (ref. 21), it has been
observed that periodic forcing has a direct influence on the outcome of chemi-
cal reaction across a turbulent shear layer. The results of this experiment
indicate that when harmonic forcing is applied, the mixing rate: (1) is
increased in the initial stages where the resonant eddy is forming; (2) is
decreased in the intermediate stage which corresponds to the resonant or
“frequency-locked" region; and, (3) is the same as that of the unforced layer
further downstream. 1In order to characterize these three regions, the
Wygnanski-Oster parameter X, = AU ax/Umé 1s utilized, where @ 1is the forcing
frequency (ref. 35). Roberts and Roshko (ref. 21) and Browand and Ho (ref. 36)
show that the three different regions can be classified according to the local
value of X, parameter. In region I, X, <1, the growth rate is enhanced.

In region II, Xy, > 1, the frequency-locked region, the growth rate is
inhibited. In region III, the growth rate relaxes to that of the unforced
layer.

In order to investigated this phnomenon computationally, the response of
the reacting shear layer to the application of low frequency, low amplitude
perturbations on the upstream side of the shear layer is computed. Streamwise
oscillations are applied on both sides of the layer, hence a pressure preturba-
tion is imposed without changing the vorticity field. The streamwise veloci-
ties are taken as Ul =1 + a sin (2aQt), and U2 = o U2, where a 1is the
amplitude of forcing.

The normalized distribution of the product thickness along the mixing

layer for three cases, @ = 0, 0.5, and 1, is shown in figure 17. 1In these
caicuiations, a = 0.1, and Re = 4000. The figure indicates that for @ =1,
mixing i1s enhanced in the initial part of the layer, 1 £ x £ 2. The resonant,

frequency-locked region begins at x = 2 and ends at value x ~ 3. In this
region, mixing is reduced and is less than that of unforced mixing layer.
Downstream of this region, x 2 3, mixing rate resumes its natural growth and
reaches asymptotically that of the unforced layer. For lower forcing fre-
quency, @ = 0.5, the same overall behavior is observed. 1In this case, how-
ever, the results of numerical calculations indicate that the resonant
frequency-locked region is approximately in the range 3 < 4 x £ 4. A compari-
son between the range of the frequency locked region calculated here with that
estimated by Browand and Ho (ref. 36) is shown on table I. Considering the
fact that our simulations ignore the effect of small scale three-dimensional
turbulence motion, and considering the nonuniversality of the Browand and Ho's
curve due to 1ts independence to experimental conditions and other important
nondimensionalized parameters, this agreement is encouraging.
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3.4 Effects of Strain Rate

It has been shown experimentally by Tsuji (ref. 37), numerically by Liew
et al. (ref. 38), and analytically by Peters (ref. 39), that the strain rate
has a major influence on the flame structure, particularly in nonpremixed sys-
tems. In the counter-flow diffusion flame experiments of Tsuji (ref. 37), it
was observed that increasing the magnitude of stretch near the flame surface
results in an increase of the flow of reactants into the reaction zone. As a
result, the chemical reaction is not able to keep pace with the supply of
reactants, and the reaction rate 1s reduced until local flame quenching occurs.
The analysis of Peters (ref. 39), which is based on the method of matched
asymptotic expansion at large activation energy, shows that the mechanism of
flame extinction can be addressed by examining the local value of the rate of
scalar dissipation. This parameter is viewed by Peters (ref. 39) as the
inverse of the diffusion time scale. If the local value of dissipation is
increased beyond a critical 1imit, the heat conducted away from the diffusion
flame can not be balanced by the heat produced by the chemical reaction. As a
result, the maximum value of the temperature decreases, and the reaction even-
tually ceases.

By increasing the number of scalar elements to 38 in each stream while
decreasing the computational domain to Xgpax = 4, and by preheating the incom-
ing reactants to Ti = Q/2 to start the chemical reaction immediately down-
stream the splitter plate, we were able to observe this phenomenon. Figures 18
and 19 show the instantaneous velocity and temperature rise, T - Ti, of the
scalar element at times of t =19 and t = 21, respectively. 1In this case,
the Damkohler number, the normalized enthalpy of reaction, the activation
energy, and the velocity ratio at the inlet are 50, 8, 20, and 1/3, respec-
tively. - The cross-stream direction is enlarged by a factor of 2 for the pur-
pose of clarity.

The figures show that the number of scalar elements near the braid, which
is the thin 1ink between two neighboring cores, is only a small portion of the
total number of elements within the computational domain, which reached more
than 5100. This indicates an instantaneous quenching at the stagnation points
of the layer. Moreover, the temperature and product concentration in the reac-
tion zone reach a maximum at the core of the eddies where the vorticity concen-
tration is high, while they reach a minimum at the stagnation point within the
braid between the neighboring cores where the strain and the scalar gradients
reach their maximum values. This is consistent with the results of the pseudo-
spectral calculations of Givi et al. (ref. 15), and with the experimental
observations of Tsuji (ref. 37) who showed that the local extinction of diffu-
sion flame occurs mainly at the regions of high dissipation rate. At these
regions, the temperature tends to decrease, and if it goes below a critical
characteristic value, the flame locally extinguishes.

Quantitative analysis of the effects of stretch on the chemical reaction
is rather difficult in the context of present algorithm. This is due to the
fact that there are very few scalar elements near the regions of high strain,
and as shown by Ghoniem et al. (ref. 34), most on the elements tend to be con-
centrated near the regions with low dissipation. Implementation of a numerical
scheme based on the transport of the scalar gradients, as in Ghoniem et al.
(ref. 34) can improve the accuracy of the analysis substantially, particularly
those associated with the effects of stretch. In this method, the elements are
concentrated near the regions of large gradients, or high dissipation, and

12




hence a smaller total number of elements have to be considered. The implemen-
tation of this method for the numerical simulation of unpremixed reacting flows
is presently underway to study the effect of strain rate more accurately.

4, CONCLUSION

In this work, a numerical scheme based on the transport of computational
element carrying vorticity and scalar quantities has been developed to simulate
a reacting planar, two-stream mixing layer with unmixed reactants. The scheme
solves the transport equations at high Reynolds and Peclet numbers without
using models for turbulence closure. A Lagrangian stochastic model is used to
implement the chemical reactions for both constant rate kinetics and variable
temperature Arrhenius reactions.

In the nonreacting flow simulations, the calculated statistics of the mix-
ing of a conserved scalar are in good agreement with experimental data. 1In
particular, the numerical results show the presence of twe maxima in the fluc-
tuation profile. 1In the constant rate reacting flow simulation, the effect of
chemistry is to smooth out this curve and produce a single maximum, which
agrees with the experimental observations. Harmonic forcing enhances the mix-
ing within the accelerated growth zone of the vorticity layer, while 1t impairs
the entrainment of the unmixed fluid into the cores in the resonating region.
As a result, the numerical simulation indicates a decrease in the rate of pro-
duce formation in the frequency-looked region, similar to previous experimental
findings.

In the Arrhenius, temperture-dependent kinetics, the mechanism of ignition
delay, and the effects of reactants preheating on the decease of the duration
of this delay is observed. Also, the nonequilibrium coupling between the sca-
lar dissipation rate and the flame structure is revealed as quenching fre-
quently appears within the braids. To describe this phenomenon more
accurately, work is underway to construct a higher order scheme which can pro-
vide better resolution at the regions of strong strain rates.
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TABLE I. - r

Frequency locked region

Q Calculated | Measured (ref. 36)
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0.5|3<x<4 | 2.66<xs55.33 ! —W

1.0 2<£x<3 1.33's x £ 2.66
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)

FIGURE 1. - SCHEMATIC DIAGRAM OF THE SHEAR LAYER MODEL.
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